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Sumpary

Sharp upper and lower bounds are derived for hazard rates and
densities of distributions with monotone hazard rate. These bounds
are related to Chebyshev inequalities in that they are obtained under
the condition that certain maments are kmown. Similar bounus are also

obtained wvhen the density is a Polya frequency function of order two.




l. Introduction. There is, of course, a large body of literature
devoted to the subject of Chebyshev-type inequalities, which provide
bounds for the probability of v.rious events in terms of moments. In
spite of this, there seems to be essentially no inequality known which
gives a bound for the density in terms of moments. One reason for

this is that the moments can in general be possessed by a discrete
distribution. Furthermore, densities are not unique when they do exist,
but may be arbitrarily defined on a set of measure zero to violate any

bound.,

There are, however, a number of Chebyshev inequalities known which
apply to distributions F subject to restrictions which may force a
density to exist, at least over part of the support of F. Furthermore,
the restrictions may suggest a natural version of the density. As an
example, we cite the result of Gauss [7] which requires 1 - F(x) to ve

convex in x > O.

In Sections 2 and 4 cf this paper, we obtain bounds on both the
density and hazard rate under the assumption that the hazard rate is
monotone. A distribution F 1is said to have increasing (decreasing)
hazard rate denoted IHR(DHR) if log[l - F(x)] is concave on the support
of F (convex on [0,*)). In [11], it is shown that if F is IHR(DHR),
then F 1is absolutely continuous except possibly for a jump at the right-
hand (left-hand) endpoint of its interval of support. Hence F has a
density, say f, with the possible addition of one saltus. The ratio

q(x) = £(x)/[1 - F(x)] 1is called the hazard rate of F, and if F is




IHR(DHR), there is a version of f for which q is increasing (decreasing).
If F is IHR, such a version of f satisfies f(t-) < f(t) {f(t+) since
otherwise q would not be increasing. Therefore, we seek upper bounds

on f(t+) and lower bounds on f(t-), and always refer to a version of

the density for which q is monotone. When F 1is DHR, the same comments

hold with "+" and "-" interchanged.

In Section 3, we obtain bounds on q(t) and f(t) assuming that
f 1is a Polya frequency density of order 2 (PF,). Briefly, f is FF,
if log f(x) 4is concave on the support of F, an interval. This
condition implies that F is IHR, but not conversely. It may be regarded
as a smoothness condition, and guarantees that the density is essentially
unique, unimodal, and continuous within its interval of support. Proper-

ties of PF, densities are discussed in [9] and [12]. Many life

2
densities such as the normal and certain of the gamma and Weibull family

are PFZ’

The hazard rate has many aliases and 4s many uses. In reliability
theory [3], q(x) is also called the "failure rate", and is a measure
of the quality of a device or structure at age x. In the theory of
the strength of materials, it is called the "risk function", and is a
function of the stress applied to a material, rather than a function of
time (see, e.g. [13]). In the theory of fatigue failures, the extreme
value distributions have been widely employed by Gumbel (8] and by
Freudenthal and Gumbel [6]. The distributions called Type I and Type III
by Gumbel have increasing hazard rate. In medical and actuarial work,

the hazard rate is called the "force of mortality" or the "age specific



failure rate".

In congestion theory (i.e., queueing theory, traffic theory,
telephone trunking theory) the renewal density m(t) (renewal rate)

is of interest. For IHR distributions,

£(0) < m(t) < q(t)

(cefe {2, p384]). Bounds on the hazard rate provided in this paper

therefore also provide bounds on the renewal density.

Throughout this paper, we assume F(0-) = 0 and write p, for

®
§ x"dF(x). Frequently, we use the easily virified relation

0
x

1 - F(x) = exp[- { q(z)dz].
0

Many of our arguments, particularly in Sections 3 and 4, utilize the
fact that IHR distributions intertwine members of certain families of
extremal distributions in rather specific ways. A fact often used is
that if F and G have k moments in common, they must cross at least
k times. If G is exponential in some interval, say (a,B), then
because 1 - F is log concave and 1 - G is log linear on (a,p), F
and G can cross at most twice in (a,3). If there are two such crossings,
the first crossing of 1 -G by 1 - F must be from below, and the second

must be fram above.

2. Bounds on densities and hazard rates in terms of a single e:pectation.

We consider first a slight generalization of the condition that F is
IHR, namely that a(x) = 6(x)q(x) is increasing in x > O, where 6(x) > 0

for x 20 and q is the hazard rate of F.




Several proofes of this section depend upon the fact that if

F(x) é) G(x) for all x, and {(x) is increasing in x > O, then

(22)  § (=) (2§ Cx)cix).
0 0
The inequality is reversed for ¢(x) decreasing in x > 0.

We begin by defining two distributions which play the role of G
in the applications of (2.1) below. Fix t > 0, suppose that 6(x) > 0
for x> t, and let
1, ' x<t

1- Ga(x) = ”
exp{-a § dz/6(z)}, x>t .
t

In case O6(x) >0 for all x< t, let

exp{-a Sxdz/e(z)}, 0{x<t
1-H(x)= 0

0) X>t.

If e&(x) is increasing in x > 0, then

a(t), xg<t 0, x <t
a(x) £ , and a(x) >
@, x>t a(t) x2t,
so that
a(t)/e(x), x<t 0, x<t
q(x) < , and q(x) 2
®, x>t a(t)/8(x), x> t.

Hence




—————

6
X
. § a(t)dz/6(z), xg<t
Qx) = § q(z)dz < {°
9 @y x>t,
and
0, x<t
Q(x) =
a(t) § dz/6(z), x> t,
t
or

(22) 1= Hyp)(x) 1= F(x) S 1= Gy ().

Theorem 2.1. If a(x) is increasingin x>0, 68(x) >0 for x> t,
and if Y 1is a strictly monotone function on [0,=) such that

@®

§ ¢(x)dF(x) = v < ®, then there exists a unique solution 8, of

0

v =§ %(x)dG (x) = p,(a,) whenever t < C-l(v). Furthermore,
0 a8, 1'1

8 /8(t), t<THY)

(2.3) f(t+) < q(t+) £ ]
m’ t Z C-l(V).

Proof. The second inequality is trivial and we need only consider the

first. Assume that &(x) 1is increasing in x, so that by (2.1) and

(2.2),

v = é C(x)aF(x) < é C(x)dGa(t)(x) = ¢l(a(t)).

Clearly ml(a) is strictly decreasing and continuous in a, lim ¢l(a) =
a-0
= 1im (x) > v, lim o.{(a) = (t). Thus, if v > Z(t), there exists a
X a
unique solution 8, of @l(al) = v; furthermore, a8y > a(t) yields (2.3).




The proof for decreasing ¥ is analogous. ||

In case ¥(x) = x so that v = Mo (2.3) reduces with 6(x) =1 to

(2.4) £(t+) < q(t+) £
= t2 l-‘l:

and if ¥{(x) = x2 so that v = i, (2.3) with 6(x) = 1 becames

2
L+t
————22 y, < p;‘/z
(2.5)  £(t+) < q(t+) < -t
@y t2 Pé/z .

Further explicit results are given in Theorem 2.3.

Renark. Theorem 2.1 requires that 6(x) > 0 for x > t. A special
case of interest is 6(x) = 0, x < X, {t, and 0(x) =1, x> Xys SO
that the hypothesis that a 1is increasing becames the hypothesis that
qQ 1is increasing in x » X5e Thus Theorem 2.1 can be applied to the
case that q 1is actually initially decreasing.

Before discussing the sharpness of (2.3), we prove

Theorem 2.2. If a(x) is increasingin x> 0, 68(x) >0 for x< t,
and if ¥ 1is a strictly monotone function on [0,®) such that
@

§ T(x)dF(x) = v < ®», then there exists a unique solution a, of

0 ® :

v=F Cx)dH (x) m9_.(a,) whenever t > ¢ *(v). Furthermore
0 a, 24 2

az/G(t), L > C-l(v)
(2.6) q(t-) 2
o, t S (-l(v):




(2.7) £(t-) > 0.

Proof. We prove (2.6) only for ¥(x) increasing, in which case it

follows fram (2.1) and (2.2) that

v = é E(x)dF(x) > % Cx)dd, () (x) = @, (a(t)).

Clearly Qz(a) is strictly decreasing and continuous in a, lim wz(a) = (=)l
a-0

1lim ¢2(a) = ¥%(0) < v. Thus, if ¥(t) > v, there exists a unique solution

a-®

a, of Qz(a) = v3 farthermore, a, ¢ a(t) and this ylelds (2.6). |
Remark. Theorem 2.2 requires that 8(x) > 0, x < t.

In case 5(x) =1 and ¥(x) = x so }hat ;= By 8, can be
-a,t/p
obtained from Table I of [1], where e 1 is tabulated.

Although Ha does not have a density at t, we can still define
2
two versions of its hazard rate by

um[ﬂa (x+A)-Ha (x)]/'A[l-Ha (x)], x<t

) ato %2 2 2
g (x) =
®, x > %,
and
Lim[H (x+a)-H (x)]/A[l-Ha (x)], x<t
. a0 22 ) 2
qy (x) =

@ x>t .

Similarly, let qa (qé) be the left (right) continuous hazard rate of Ga 5
1




Theorem 2.1'., If t < C-l(v), equality in (2.3) is attained uniquely
by the hazard rate qfi. If t & (v), equality in the right side of
(2.3) 1s attained by the hazard rate q;; the bound on f(t) can be

approached arbitrarily closely by distributions of the form

[ b
e lx, 0<{x<t

(2.8) 1-G(x)= |f

b, t-b,(x-t)
91 2 y t2x,

where b, satisfies § C(x)dG(x) = v and b, = .
0

Theorem 2.2'. If t < L 1(v), equality in (2.6) and (2.7) is attained
by the hazard rate qj. If tD z7(v), equality in (2.6) is attained
uniquely by the hazard rate qﬁ. For t > C-l(v), equality in (2.7) is

approximated by the distributions given in (2.8) with b2 - @,

We omit the proofs of Theorems 2.1' and 2.2'. It is straightforward
to verify that the given distributions attain equality. Uniqueness
follows from an examination of the proofs of Theorems 2.1 and 2.2.
Remark. Since the density of Gal is PF, (indeed PF_), the above
bounds which are attained by 9 cannot be improved with this additional
assumption. However, the non-trivial lower bound of (2.6) is attainei
by qy, and since H does not have a PF, density, (2.6) can be improved
when f 1is PF._.. Also in this case, f has a non-tiivial lower bound at

2
C-l(v) (See _action 4).

Although the bounds of Theorems 2.1 and 2.2 are sharp, they are not
explicit; the following theorem gives an explicit result that is sharp

in only very special cases.



10

@

Theorem 2.3. If F is IHR, and BL = § xrdF(x), where r > 1, then
0
[r(+1)] Y7 1/r
(2.9) f(t+) < q(t+) < pl/;:-t r 0<t< B .
r

The inequalities are sharp for r =1, and in case t =0, for r > 1.

Proof. Since q(x) is increasing in x,

a(t) ¢ A [ ™) - au)]
/T -t

x
where Q(x) = § q(z)dz. The right-hand inequality follows from this,
0
and the bound 1 - F(pI]:/r) 2exp{—[r‘(r+l)]l/r} ([4], Theorez 3.8). 1In
case r = 1, (2.9) reduces to (2.4), which is sharp. Eauality is

attained in (2.9) with t = 0 by the exponential distribution with rth

moment W .
r

Remark. The inequality

Morha .
f(O) S X ’ i1,] = 1,2,..
M4j-l

was given in [2, p383] where \ = pr/F(r+1). Bounds on f'(0) assuming
f is PF, and £f(0) = 0 are given in {9, pl030]. Additional bounds can
be given on derivatives of - at t = 0 assuming higher order total

positivity conditions [10].

In case a(x) = 8(x)a(x) is decreasing, the results possible are
more limited thar in the increasing case. We obtain only upper bounds
for q(t) and f(t) under restricted conditions, and rive some examples

to show the impossibility of certain other non-trivial results.
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Let 6(x) >0 for all x > 0, and let

exp{-a Sxdz/e(z)}, x<t
0

1 - Ka(x) = ¢
exp{-a § dz/6(z)}, x> t.
0

If a(x) = 6(x)q(x) is decreasing in x > 0, a(x) > a(t) for x< t,
X

and a(x) D0 for x> t. Hence Q(x) = § q(z)dz > a(t) Sxdz/e(z) for
0 0

x > t, so that
(2.10) 1-F(x)<1- Ka(t)(x)°

Theorem 2.4. If a(x) is decreasing in x > 0 and { is a strictly

decreasing “unction on [0,®) such that § Z(x)dF(x) =v < @, then there
o 0

exists a unique solution a, of v=1| C(x)dKa (x) = cp3(a3). Furthermore
0 3

(2.11) q(t+) < a3/9(t).

Proof. By (2.1), (2.10) and the fact that ¥ is decreasing, v > cp3(a(t)).

Clearly q>3(a) is strictly increasing and continuous in a, lim q>3(a.) =

a-,»
= &(0) > v, lnm QB(a) = 1im {(x) < v. Hence a, exists uniquely and
a-0 X=o |

since v 2q>3(a(t)), a(t) < 85

Theorem 2.5. If a(x) is decreasing in x > 0 and if { 1is a strictly

increasing function on [0O,») such that lim ¥(x) =M <« and

[ -] X

§f ¥(x)dF(x) = v < », then there exists a unique solution a, of

0 t

v =§ Cx)dK (x) + MK (t) =0
0 4 4

(2.12)  q(t) <o /B(t).

A(a[.); furthermore,

Proof. By (2.1), (2.10) and the fact that ¥ is increasing, v £ (pl‘(a(t)).

Clearly ',’14(8) is decreasing and continuous in a, lim q>4(a) = ¥(0),

8§ =0
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lim ¢ ,(a) = M. Hence a, exists uniquely and since v { ¢, (a(t)),
a-0 4 4
(2.12) follows. ||

Equality is attained in (2.11) uniquely by the hazard rate of the
(improper) distribution Ka3, and in (2.12) by Ka,’ so that (2.11)
and (2.12) are sharp. ;

The following theorem provides upper bounds for the density in
case F 1is DHR. The proof given is quite unlike the preceding proofs,
but is similar to the kind of argument used in [5].

Theorem 2.6. If F is DHR and ¥ is a monotone function on [0,®)

such that § Z(x)dF(x) = v < =, then
0-

(2.13) f(t-) < max[ sup aae-at, sup be-bt]

0<a< bpa#

b/
where for each a, a = a(a) satisfies

{2.1)  aa § €(x)e”dx + (1-a)%(0) = v,
0

@

—-a
and a* = a(l) is determined by a* § {(x)e A Xix = v.

Proof. Let

where for each a, a is determined by (2.1.), and suppose that for all a,
F # L . Since L, and F satisfy § WL, = §CdF = v, 1 - L, and 1 -F
must cross at least once (otherwise, by (2.1), we obtain a contradiction).

Since 1 -F 1is log convex and 1 - Ll is log linear, 1 - Ll can Cross

1 - only once, and this crossing must be from above. Denote by U,
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the point where 1 - La crosses 1 - F from above if such a crossing

exists, and otherwise lut u = @, By the log convexty of 1 - F

and log linearity of 1 - LG, it can be shown that u is continuous

in a. Furthermore, since 1lim 1 - La(x) =0 forall x>0, we
a0
conclude that limu = =,
a
a-O

-b

X, x20, so that M, =L, and 1 - M,

Now let 1 - Hb(x) = e 1

crosses 1 - F from above at U . Let Yy be the crossing of 1 - F

by 1 - H.b from above if such a crossing exists; otherwise, let vy = 0.

Then since 1lim 1 - Hb(x) =0 for all x>0, limv, =0, and again it
b+ b

can be shown thet vb is continuous in b.

Thus we have shown that for each point t 2 Vis there exists a
such that 1 - La crosses 1 - F from above at t. But this means
that at t, the density of F 1is less than the density of La’ or
£(t) < a0 ®% uhere a is determined by (2.14). Similarly, for each
point t < UL there exists b such that 1 - Hb crosses 1 - r from

above at t, and f(t) < bePt, |

Theorem 2.6'. If ¥(x) is increasing in x, equality can be attained

in (2.13).
. -at _ -at
Proof. If the bound is attained by sup age = saje ", then equality
0<ad
is attained by the density of L(1 . If the bound is attained by
-b.t 0

sup be-bt = boe L , then equality is attained by the distribution
ba* b

= Ox

e . 0{x<t+ce

1 - M(x) =

-bo(t+e)-c(x-t—¢)
e y x2t+e




where ¢ is determined by the moment condition § Z(x)dM(x) = v. Such

a distribution is DHR, (i.e., ¢ < by), since § L(x)bye 0%ax < v. |
0
Corollary 2.7. If F is DHRand § x dF(x) = p. <=, then
0
 (te)7} t < xxl_/"
-tAl/r
(2.15)  £(t-) < x;l/’e L xxl‘/" <tg (Hl)xi/"
r+1
(L TR O D (wl)xi/" ,

r-t

where Xr = pr/F(P+l).

Proof. This result is a direct application of Theorem 2.6. H

Theorem 2.8. If F is DHR, p_=§ xTdF(x), and F(0+) = 0, then
0
(2.16)  £(0+) = r(0+) zx;l/r.
Proof. Since Q(x) = -log(l - F(x)) 1is concave, Q(x)/x 1is decreasing

in x, and q(0) = iz Q(x)/x 2 QI AT e 1 - F(pi/’> <
X

o, l/r
e T (r+1)] (4], and the result follows.

< |

Note that equality is attained in (2.16) by the exponential distri-

bution,

In order to construct examples showing the impossibility of certain

other non-trivial bounds, we consider

e-bx, x<z
1 - N(x) =

Chate(xeg)”
om0 C(YZ)J, I

where b and c¢ jointly satis{y the moment condition
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(2.17) v = § Z(x)dN(x) = a(z ,b) + p(z,b)y(z,c),
0

bxdx, g(z,b) = e’bz, v(z,e) =c § C(x)e'c(x'z)dx.
z

a(z,b) = Szc(x)be‘
0

Note that lim a(z,b) = £(0), lim a(z,b) = 0, Um y(z,¢) = {(z) and

b b0 c-
lim y(z,c) = 1im {(x). Clearly N has hazard rate
c-0 X0
b, x<z
qn(x) =
€y XD 2
(- -3
In the following, q is decreasing and § ¥(x)dF(x) = v.
0-

(1). If ¥ is decreasing and t > O, then g(t) > f£(t) >0 is sharp: Choose ¢,
v> e lim{(x), and c sufficiently small tha* a(z,0) + B(z,0)r(z,c) < ¢.

X
But limfa(z,b) +B(z,b)y(z,c)]= £(0) > v; hence by continuity, for sufficiently
b=
small c, there exists ‘b > ¢ satisfying (2.17). With z < t, this

shows the impossibility of non-trivial lower bounds for q(t) and f(t).

(11). If ¥ is increasing and 1lim g(x) = M { », then q(t) > 0 is sharp:
x-,
Observe that vy(z,c) increases monotoncially to M as ¢ decreases to

zero, so that a(z,b) + 3(z,bly(z,c) < a(z,b) + B(z,b)M. Since B(z,b)
decreases monotonically to zero as b decreases to zero, and since a(z,b)
is bounded and 1lim a(z,b) = 0, we conclude that (2.17) has a solution

in b for fixedb-‘::, sufficiently small. With z < t, this shows the

desired result.

(i1i). If T is increasing and t > O, then q(t) < ® is sharp: For

fixed b sufficiently large, %(0) - a(z,b) and PB(z,b) are arbitrarily

small. Since ¥(0) < v, and since y(z,c) is monotone in <c, there exists

S
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a unique solution ¢ of (2.17). Furthermore, lim ¢ = 0. With z > t,
b

the result follows,.

With the exception of Theorem 2.6, the results of this section
have been obtained by essentially the same method. While this metho!
is straightforward, it does not always seem to be adaptable to more
coamplex problems, In Sections 3 and 4, we therefore utilize a third
method, more closely related to that of Theorem 2.6. Before proceeding,
however, it may be worthwhile to illustrate the method in an alternate

proof of Theorem 2.1 (for the case that 9(x) =1).

Let 6. =fc :0¢w( (-l(v)}, where

(2.18) 1l - Gw(x) =
e—a(x—w) XD w

and a 1is determined by

and b is determined by (2.19).

We remark, but do not prove, that a and b are uniguely determined

by (2.19).




Alternate Proof of Theorem 2.1, 6(x) = 1. Consider the case that

t < C'l(v). Let Gv'gl’ where 8 satisfies (2.15). We may assume
F s \'7-" and F(x) D0 for x> t since otherwise the inequality is
gv/.cuse By log concavity, 1 - F(x) must cross 1 - Gt(x) from below
say at x, > t. Furthermore, 1 - F(x) must be continuous at x, and
possess a right derivative at X5° The slope of 1 - Gt(x) at X, is

less than the slope of 1 - F(x) at X3 i.e.

Since 1 - F(xo) =1 - Gt(xo), q(xo) < a,, and by monotonicity of q,
q(t+) < a,. Since 1 - G,(t) = 1, equality is attained in (2.3) by

G, ¢G,. I
A similar proof of Theorem 2.2 utilizes both gl and G,.

3. Bounds on PF., densities and hazard rates. In this section we

2
strengthen the hypothesis that F 1is IHR by assuming that F has a

PF2 density f. This stronger hypothesis makes possible improvements

of the inequalities of Section 2 except in cases where 2quality is
attained Yyadistribution with PF2 density (see the remark following

Theorem 2.2').

Theorem 3.1. Let f be a PF, density such that f(x) =0 for x<0.

Let { be a function continuous and strictly monotone on [0,®) such

that § ¥(x)f(x)dx = v exists finitely. Then
0

t < (-l(v)

8,
(3.1) q(t) ¢

@y t 2 C-I(V)’
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t < V)
t = C-l(v)

be-bt/(l S e-bt), t > C-l(v),

8

(3.2) £(t) <

where a, 1is the unique solution to

1
(x-t)

t
v=1{ Z(x)a,e dx
0
and b 1is the unique solution to

b
(3.3) v =1F C(x)be”
0

dx/(1 - %)

All inequalities are sharp.

Proof. (3.1) and (3.2) for t < C-l(v) follow from Theorem 2.1, and
sharpness follows from the remark following Theorem 2.2'. In (5, Lemma
5¢3], it is proved that for ¥ increasing, (3.3) has a unique solution b
whenever t > C-l(v); by obvious modifications of the proof given there,
we obtain the same result for { decreasing. Let

be_bx/(l - e-bt), 0<¢x<t

g, (x) =

o, x>t
and suppose that £ # g,+ Since log £f(x) is concave and log gt(x) is
linear in xe[0,t], there are at most two crossings of f by g, (see [9]).

® ®

Since f and g, are densities satisfying é C(x)f(x)dx = é C(x)gt(x)dx = v,
they cross at least twice. Hence [ and g, cross exactly twice in [0,t];
roreover, the second crossing of £ by g, must be from below, and we
conclude that f(t) < gt(t) as asserted. Of course, equality in (3.2)

for t > ¢ *(v) 1is attained by gy |
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Theorem 3,2. Let f be a PF, density such that f(x) =0 Zor x < 0.

Let ¥{(x) be a function continuous and strictly monotone on [0,®) such
@

that § ¥(x)f(x)dx = v exists finitely. Then
0

0 t < L)
(3.4) q(t) >

nm o
inf g (t)/f g (x)dx, t > L (v),
ot w2

where
be-bx/(l - e-hn), 0<x<nm
g (x) =
(05 elsewhere,

"
and b is uniquely determined by § C(x)gﬂ(x)dx = ve
0 ™

e -1 -
Proof. Sharpness of the trivial lower btound for t < { “(v) <follows from
Theoren 2.2'. Let x*(m) be the unique point where g crosses S from

below, and suppose first that % < x*(®). Then there exists =4 >t such
g, (t) (the proc of this in case { Is increasing is ziven
“0

in {5, Proof of Theorem 5.1); the mcdifications necessary in case ¥ is

that f(t)

decreasing are obv;ous and not extensive). 3ut (%) = g (t) together
"0 0

with 1 - 7F(t) <§ g (x)éx (azain, see 3, Proc’ of Theorem 3.1)) yields
“C

ct

the desired result.,

It remains %o consider the case that t D> x*(=) = x*. Then by an

argument identical with the case t < x* we chitain

a(x*) 2 g.(x)/) z.(x)ix

M

which together with g irncreasins yilelds (3..) in <hlis case.

As noved in Secticn 2, P s densities have ncn-irivial lower bounds
: . : . S ~p LT
at "mczment points". 1In particular, we obtain lower bounds on :(ur/ )

for r 2 1. To do this, we use the following




Lemma 3.3. If § @(x)fl(x)dx = cp(x)fz(x)dx { ®, and if the support of

fl is contained in the support of f2, then

(3.5)  § o(x)f (x)log(f, (x)/f(x)] 2 0.

Proof. § o(x)f,(x)log{f;(x)/f,(x)]dx = - § @ (x)f(x)log[f,(x)/f, (x)]dx 2

>0 Q(X)fl(x)ll—fz(x)/fl(x)]dx=5¢(X)fl(X)dx - § o(x)f,(x)dx = 0. The

inequality follows directly from log z< z - 1, z > 0. ||
Remark. with 9p(x) = 1, this is the well-known "information inequslity".

Theorem 3.4. Let v be a non-negative function and A\ be a number such

that
® . ) ®© Ax
0<§ o(x)f(x)dx = § o(x)he ™ dx < =,
0 0
If £ is PF, and r(x) =0, x <0, then

2

(3.6) 2(a) >re 2

where a = (§ x(x)f(x)dx)/(§ 2(x)f(x)dx).

[} ®

. as R -\ X, . .
Remark. \ satisfyins § o2(x)7(x)dx = § p(x)\e "dx does not necessarily
0 Q
exist in general. However, i o is monotone, thern such a A always

exists.

Proof. Since { is log concave, log 7(x) lies below its tangent a% a,

l1.€ey (x-a)"(x)/f(a) +1og S(a) > los £(x). If o(x) 20,

o{x)(x - a)1(a)/S(a) + o(x)loz £(a) > o(x)los £(x)

and upon ir.egrating, we obtain



@ ©

—'((91 § 0(x)(x - a)f(x)dx + log £(a) § o(x)Eix)dx > § o (x)£(x)log F(x)dx
0 0 0

- ]

> é o (x)f(x)[log A - Ax]dx = (log A - a\) é o (x)£(x)dx

The second inequality follows from Lemma 3.3. By the definition of s,

the first term on the left of this inequality is zero, and we have

log f é o (x)f(x)dx > (log A - a\) é o (x)f(x)dx.

Corolla .5. Let f be a PF. dersity such that f(x) =0 for x < 0,

2
and p S x' £(x)dx. Then if r > 1,

l
(3.7 W) 2 re) e e

Proof. If r =1, the result follows from Theorem 3./ with o(x) =1.
r+1 1
pEE e

_.r
If r>1, let o(x) = x + (pr+l r

- pl). Then since
i/s is increasing in s > 0, it follows that o(x) > 0. By straight-
forward algebra, a = pi/r. Thus A\ = [F(r+l)/pr]l/r, and (3.7) follows. ||

The bound of (3.7) for r = 1 was originally communicated to us

by Samuel Karlin.

L. Bounds on densities and hazard rates when F is IHR with specified

first and second moments. Assume that F 1is IHR with By = 1 and By

specified. In [5], the class of extremal distributions for bourding F
were determined. This same class of distributions is also important in

bounding { and q, and we begin with some definitions.

Let T, =1 - vﬁZ-l (since F 1is IHR, ui < My < 2pi so M, - 120),

0

where a. in [0,1] satisfies

_ -1
and let T, = - aj log(l - ao) 0



Tl -8, X -1 1l - ao
(A1) “2/' é o dx 19 (1 + " log(1l - ao)].
0
Let g3 = {GT, T2 Tl} where
L5 x<a
(4.2) 1l- GT(x) = e-a(x—A), ALx<T, T Tl
o, x>T
and where a and 4 in [O,TO] are determined by the moment conditions,
i.e.,
(43) 5 [1 - Gplx)ldx=uy = 1,
0
(4.4) § x[1 - Gp(x)]dx = /2.
0
Let gA = {GT : TO ST Tl}, where
-a.Xx
e 1 , X< T
([605) 1l- GT(X) = -alT—az(X—T) s TO S T S Tl
e s x 2T
and ay < a, are determined by the moment conditions (4.3), (4.4) as

before. It is shown in (5, Lemma 3.4] that a,A and 8, ,8, satisfying

(4.3) and (4.4) exist uniquely. It is also shown in (5] that for t > 0,
inf[1 - GT(t)] {1 -F(t) <sup[l - GT(t)]

where the extremums are taken over g3 J gA. These bounds have been

tabulated for i, = 1 and selected values of pz(l < By <2) [1].

1

Theorem 4.l. If F is IHR with density f, F(0) = 0, by = 1 and P

is specified, then
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ao, t=20

a, 0<t< To
(4e6)  £(t+) S q(t+) _i/2

(}32‘1) ’ t = TO

Q} t 2 Tl’
(1007) Q(t+) S a2’ TO S t S Tl’
and

-‘lt

(48) £(t+) < aje ’ TO < ik < Tl’

where a5 is defined by (4.1); a is defined by GT ¢ g3 with A=t
. ©3 G i =
and some T 2 Tl’ a, and a, are defined by Gy € 94 with T = t,

All inequalities are sharp.

Proof. Case 1,0 <t < TO. Either F(t) =0 and f(t) =0, or 1 - F(x)

crosses 1 - GT(x) from below at, say t > t, where 1 - GT(x) is given

ty (4.2) with A = t. Therefore f(to) < gT(tO) and 1-F(to)==l-GT(to), so that
- : ol ry

q(to) < qT(tO) = a, where g, (qT) is the density (hazard rate) of Gre

Since t < to and q 1is increasing, we have that q(t+) < a. Equality

in f(t+) { a 1is attained by the density of GT. Letting t decrease to

zero, we see that f(0+) < lim a = 8.
ti0

Case 2. TO <t < Tl' From (5, Theorem 3.3] we know that 1 - 7(t) <

1 - Gt(t) where Gt is given by (4.5). This together with the fact that
F and G.r must cross at least twice implies that 1 - r(x) mnust cross

1 - Gt(x) from below at some to > t. Hence q(t+) < q(to) < qt(tO) = a,

Jhere q, is the hazard rate of Gt; and this is (4.7)e From (4.7) and
-a.t

1-F(t)<1- Gt(t) e * , we obtain (4.8). Equality is attained by

Gt in both (4.7) and (4.8). Letting t decrease to TO’ we obtain from



this, (4.6) with t=T..

Case 3. t > Tl' The bound f(t) < q(t) { ® cannot be improved as can be

seen by considering the extremal distribution Gy e G, where T =t. I

t
Remark. e-‘l for T0 St <£T, is tabulated in Table III, [1].

Theorem 4.2. If F is IHR, F(0) =0, By = 1 and Bo is specified, then

o, 0% TO

2y TO R T1
(4.9) a(t-) 2 ( a,, t=1T

a, t > Tl

(Pz“l)‘L/zy T ==,

where a,, a and a, are defined in Theorem 4.l. The inequality is
sharp.

Proof. Case 1. 0t < TO. The lower bound is attained by GT € gA for

A t.

Case 2. TO <t< Tl. Consider G, e glf Either 1 - F(x) crosses

1- Gt(x) from above in [0,t], or 1 - F(x) <1 - Gt(x) for x in
[0,t]. 3Suppose 1 - F crosses from above, say at to < t. Then

a(t-) 2> q(to) > qt(to) =a, where g, is the hazard rate of G,. Next,
suppose 1 - F(x) 1lies entirely below 1 - Gt(x) for x in [O,;t].

Then q(t-) > q(0+) 2> a,, which completes the proof of this case.

The cases t = Tl and t = ® are obtained as limit results from

Case 2. ||

Theorem 4.3. If F is IHR with demsity f, F(0) =0, By =1, and o

is specified, then



0
(4.10) £f(t-) > {min[g(t),h(t)], Ty <t < Ty
0, t > Ty
-a,t
where g(t) = inf ae-“(t-A) and h(t) = inf ae 1 .
0<A<T, 1,<1<T,
Proof. If 0t < Tgs the lower bounds are attained by GTO. If ¢ >7Tp,
the lower bound is attained by GT . Suppose now that TO @ BT Let
l e

23]

s(T) deno“e the crossing in (4,T) from above of 1 - GT e95 by 1 -

- m
- 4 e

if such a crossing exists; otherwise, let s(T)

Case 1. Tj <t < S(Tl)’ Let G, ¢ QA) and let w(T) denote the point at

which 1 - F(x) crosses 1 - GT(x) from above in (0,T). Then s(Tl)

l)’ lim w(T) =0 and w(T) is continuous in T (see [5, Proof of
TiT

Theorem BEE]). Hence there exists T such that w(T) = t. Since

w(T

crosses 1 - F(x) from below at %, it follows that £(t-) > a,e .

Case 2. s(Tl) <t < s(»). Let GT € Gaj by continuity of s(T), there

exists T such that s(T) = t., Since 1 - r(x) crosses 1 - GT(x) from
)

above at t, f£(t-) > ae—a(t'-A

Case 3. s(») <t < T,. If s(=) > T,, then of course this case is vacuous.

Otherwise, let v(T) be the crossing in (T,®) from above of 1 - GT(x)
by 1 - F(x) if such a crossing exists, and let v(T) be the right-hand
endpoint M of the support of F 1if such a crossing does not exist. Then

v(TO) = g(®) and 1lim v(T) = M. 3By continuity of v, there exists T
gt
in [TO,Tl] such that 1 - F(x) crosses 1 - GT(x) from above at t,

5 q 3 0 !
and the argument is concluded as in the previous cases. |




[7]

[9]
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